
development effort for OBST applications and by

opening the way to functionality already avai-

lable as Tcl extensions, most notably Tk and rela-

ted tools. With tclOBST the full power of OBST

is provided for convenient and explorative use in

an interpretative environment.

In terms of generality, development effort,

and the ease with which tclOBST can be combi-

ned with other functionality using a Tcl/Tk infra-

structure, tclOBST is unique compared to the

interactive interfaces offered for other object-ori-

ented database systems [8].

Tcl/Tk proved to be an almost ideal basis for

the described development effort. Its probably

greatest asset is difficult to quantify: the experi-

ence that things fit together well and that solu-

tions are accomplished fast and work well.

With larger tclOBST applications in mind, it

might be about time for the Tcl/Tk community to

reach consensus on larger grained programming

abstractions than Tcl procedures.

References

[1] S. Delmas, XF - Design and Implementation of a

Programming Environment for Interactive

Construction of Graphical User Interfaces, Master’s

Thesis, Technical University of Berlin, Institut für

Angewandte Informatik, March 1993.

[2] A. Lampen, Advancing Files to Attributed Software

Objects, Proc. Winter USENIX Conf. 1991, pp. 219-

229.

[3] C. Lewerentz, E. Casais, STONE: A Short Overview,

STONE Tech.Rep. FZI.40.1, Forschungszentrum

Informatik (FZI), Karlsruhe, May 1992.

[4] J. Ousterhout, Tcl: An Embeddable Command

Language, Proc. Winter USENIX Conf. 1990, pp.

133-146.

[5] J. Ousterhout, An X11 Toolkit Based on the Tcl

Language, Proc. Winter USENIX Conf. 1991, pp.

105-115.

[6] B. Schiefer, An Environment for Supporting Schema

Evolution in Object-Oriented Databases, Tech. Rep.,

Forschungszentrum Informatik (FZI), Karlsruhe, in

preparation (in german).

[7] C. Schürmann, How to use the OShell in STONE,

STONE Tech.Rep. FZI.48.0, Forschungszentrum

Informatik (FZI), Karlsruhe, October 1992.

[8] V. Soloview, An Overview of Three Commercial

Object-Oriented Database Management Systems:

ONTOS, ObjectStore, and O2, SIGMOD Record,

Vol. 21, No. 1, March 1992, pp. 93-104.

[9] D. Theobald, The Design of a Tcl Interface to OBST,

STONE Tech.Rep. FZI.47.1, Forschungszentrum

Informatik (FZI), Karlsruhe, April 1993.

[10] J. Uhl, D. Theobald, B. Schiefer, M. Ranft, W.

Zimmer, J. Alt, The Object Management System of

STONE - OBST Release 3.3, STONE Tech.Rep.

FZI.27.2, Forschungszentrum Informatik (FZI),

Karlsruhe, March 1993.

Appendix: How to get OBST / tclOBST

The current version of OBST and OBST appli-

cations such as tclOBST are freely available via

anonymous ftp from ftp.fzi.de (141.21.4.3), di-

rectory /pub/OBST/OBST3-3.

The directory /pub/OBST/OBST3-3/psfiles

holds postscript versions of the documentation

which is as well contained in the distribution fi-

les.

3. Status and Future Work

Since the first release at the start of this year, a

number of small applications were implemented

based on tclOBST. tclOBST was furthermore

used for prototyping and testing OBST code

which was later on transfered to C++. These

translations required only minor effort if Tcl

specifics such as sophisticated string manipulati-

ons were used only sparsely.

Although we conducted no comparative stu-

dies, we feel development times to be significant-

ly shorter based on experiences with previous

C++ implementation tasks. This does in particu-

lar hold if the application includes a graphical

user interface (e.g. a graphical browser for OBST

meta data).

Some benchmarking results and usage expe-

riences showed the overhead incurred by

tclOBST - in comparison to programming an

OBST application in C++ - to be acceptable and

in most practical cases not even noticeable. Ho-

wever, this required substantial additions to the C

interface described above for caching OBST

meta data and hence reducing database lookups.

meta
data

application
data

OBST data base

application script

Figure 3 tclOBST application

OBST
library

application
library

tclOBST

Tcl/Tk library

The total development effort for tclOBST was 3

person months, in which most time was spent in

deriving the conceptual mapping of the OBST

data model and implementing the C interface -

the actual embedding in the Tcl framework took

about two weeks.

Currently, tclOBST has reached a rather sta-

ble state and work is under way to implement lar-

ger applications based on it, e.g. a support

environment for the evolution of OBST database

schemas [6]. tclOBST will also serve as a base

component for the integration of heterogeneous

object bases: OBST and AtFS, an object base for

file objects [2]. Integration will be achieved by

drawing on existing Tcl embeddings for both ob-

ject bases, i.e. OBST by tclOBST and AtFS by

another interface called tclAtFS. On top of these

there will be an integration layer implemented in

Tcl (see fig. 4).

4. Conclusion

We presented the architecture of tclOBST, a Tcl

interface to the OBST object-oriented database

management system, as well as some experien-

ces. The interface significantly raised the usabili-

ty of OBST by considerably reducing the

AtFS
tool

OBST
tool

tclAtFS tclOBST

AtFS
object
base

OBST
object
base

common
tool

integration layer (Tcl)

Figure 4 heterogeneous database

integration with tclOBST

oriented way - as required by Tcl: The object

structure is traversed by invoking the attribute ac-

cess methods until a scalar value is reached. This

value can then be converted into its string repre-

sentation and vice versa.

A prerequisite for implementing such a tra-

versal in a generic fashion is the meta protocol of

OBST which does not only make the description

of OBST types available, but does also provide

access to the associated code, i.e. the implemen-

tation of methods and conversion operations for

scalar types.

2.2 Architecture of the Interface

The intended interface has to be complete in the

sense that any data described in the OBST data

model can be handled. It should furthermore be

generic in that no recompilation of tclOBST is re-

quired to handle newly defined OBST types. In-

stead, it should be sufficient to link with the code

associated to those types.

tclOBST was built in a three layered ap-

proach: the first layer is made up of the OBST li-

brary, the second layer is a C interface which

embedds OBST in C, and the third layer is the

actual embedding in Tcl. Here, we only present

the most important aspects of this interface. A de-

tailed description can be found in [9].

The C interface basically provides an opaque

handle type2 which can refer to any OBST object,

two functions to invoke methods specified by

name, and a means to capture errors raised by

OBST - in particular type errors.3 Furthermore,

there are accessor functions to the part of the

OBST library for which there is a C++ interface

but which is not expressed in the OBST data mo-

del. Additional support is provided for the data

container classes of the OBST library such as

Set, List, ...

The C interface is as well generic as comple-

te in the above sense. It is generic, since there is

a fixed set of functions and types which suffices

2. This opaque C handle is a fixed size byte array.

3. A type error will in particular be raised and caught

when trying to invoke a method which is not defined

for a given object.

to handle any data which is defined in the OBST

data model.

These properties of the C interface carry over

to the Tcl embedding which defines operations to

convert between C object handles and Tcl object

handles. These Tcl object handles are fixed size

identifiers which do not incorporate process spe-

cific data and may hence be used across process

boundaries. The accessor functions and container

class support of the C interface are mirrored by

Tcl commands, in particular a loop command for

scanning such container objects.

Furthermore, a Tcl command for invoking

methods was defined which transparently han-

dles the appropriate conversion of method argu-

ments and result values: class instances are given

and returned, respectively, as object handles, and

scalar values in their string representation (e.g.

”6” for an integer type). Finally, a natural syntax

is achieved by transparently binding object han-

dles to this Tcl command, i.e. object handles be-

come Tcl commands themselves. Hence, the

application of a method ”get_sources” to an ob-

ject handle ”$module” and the following applica-

tion of the method ”card” on the resulting object

(cf. fig. 2), read as:

set no_of_sources [[$module get_sources] card]

Fig. 3 shows an architectural overview of a

tclOBST application: the shaded area represents

the code of a customized Tcl interpreter which is

capable of interpreting a script of Tcl(OBST)

commands. It consists of a standard part which

will appear in all such interpreters - namely the

core OBST, tclOBST and Tcl/Tk libraries, plus

the additional code which is associated to the

(OBST) data types used in the application.

tclOBST is built on top of the core OBST library

whereby access to the application specific code

and its data is provided by the OBST (run time)

system and by interpreting the meta objects hol-

ding the description of application objects. As

symbolized by the dimmed script, tclOBST will

be mostly transparent to the writer of an appli-

cation script which will think and program in

terms of application objects.

ble, but yet general mechanisms for tool integra-

tion in STONE which are applicable to as well

OBST based as other tools.

2. The tclOBST Interface

Starting from the above listed experiences we

looked for a way to provide flexible, interpretati-

ve access to an OBST database. An existing in-

terpreter for a lambda calculus based language

[7] proved to be dissatisfactory in terms of user

friendliness, extensibility and integration in a X/

UNIX environment.

2.1 Ingredients

Tcl/Tk was chosen as the technical basis for

our solution because its properties matched our

requirements: Tcl [4] works well together with

UNIX/C/C++ based applications and the functio-

nality of such an application can be easily inte-

grated into Tcl as soon as the application’s data

can be represented as strings and its functionality

can be expressed by the combination of a few ba-

sic commands. A C/C++ or UNIX shell program-

mer will accustom fast to the Tcl language and

the language is lean in providing just the basic

processing capabilities which the experience of

UNIX shell programming has shown to be suf-

ficient for the applications we had in mind: stan-

dard control structures, string handling, basic

arithmetics, file handling, and program executi-

on. A particular asset of Tcl/Tk is of course the

embedded X toolkit Tk [5], whereby the existen-

ce of powerful interactive interface builders [1]

was probably even more attractive to us than Tk

itself. Tcl and in particular Tk provide good per-

formance. They exhibit a very dynamic nature in

that code and most data elements can be accessed

and modified at any time. A very important crite-

rion was that Tcl/Tk and most of the published

additions can be used without any licensing re-

strictions, since any outcome of STONE is to be

distributed in the public domain. Last not least,

Tcl/Tk and the so far published extensions are

used and constantly pushed forward by an active

user community.

The OBST data model is hybrid by differen-

tiating between class types and basic, so-called

scalar types (see fig. 1). Class types comprise

both structural and behavioral aspects, i.e. attri-

butes and methods. Attribute domains may be

class types as well as scalar types whereby an at-

tribute with a class domain will contain object

identifiers as values. Thus any, even complex

data structure is recursively built from scalar

values and object identifiers.

For an example consider figure 2 which con-

tains a subset of a hypothetical OBST data base:

the Module object contains two attributes author

and sources with class type domains String, and

Set<Source>, respectively. Both attributes hold

object identifiers. The referenced String object

contains the attribute size with an integer domain

type. This integer type is an external scalar type

according to the OBST data model (see fig. 1).

All accesses to the state of an object, i.e. rea-

ding and writing an attribute, are performed by

invoking attribute access methods generated by

the OBST system. OBST provides furthermore a

standard conversion between scalar values and

string representations. This forms the basis for

processing OBST object structures in a string-

Type

ExternalType

ClassType ScalarType

EnumType

UnionType

Figure 1 OBST type hierarchy

author:

sources:

obj#3006

obj#2605

Module String

size:

text:

Set <Source>

6

”martin”

Figure 2 OBST data structure example

Interfacing an

Object-Oriented Database System

from Tcl

Dietmar Theobald

Forschungszentrum Informatik (FZI)

Haid-und-Neu-Straße 10-14

D-76131 Karlsruhe

Germany

email: {theobald,stone}@fzi.de

May 1993

Abstract

We present an extension to Tcl which realizes a

generic interface to an object-oriented database

system.1 This interface provides flexible access

to the database system by drawing on Tk/Tcl’s

ability as a scripting language promoting rapid

prototyping and the development of graphical

user interfaces. Ongoing work investigates the

suitability of the interface as a means for applica-

tion development and tool integration.

The first chapter introduces the context of this

work and summarizes its starting point. Then the

implementation and the architecture of the inter-

face are described. Usage experiences and an out-

look on future work concludes the presentation.

1. Starting Point

The Forschungszentrum Informatik (FZI) par-

ticipates in the project STONE („Structured and

Open Environment“) which aims at the develop-

ment of a software engineering environment for

the educational domain [3]. A major contribution

of FZI to this project is the object-oriented data-

base management system OBST, a core compo-

nent which serves as the main persistent store for

the tools in a STONE environment.

OBST features an object-oriented data mo-

del which supports core concepts found in major

object-oriented languages [10]. OBST is targeted

at a UNIX environment where workstations are

coupled in a local area network. The system

employs C++ as host language for writing me-

thod implementations. Applications access the

database via a programming interface, i.e. they

are implemented in C++ and linked with the da-

tabase library.

For larger applications where the application

domain is well understood and/or efficiency is at

premium, C++ based development is the method

of choice. This does not necessarily apply to pro-

totypical implementations such as concept stud-

ies or for applications where much emphasis is

placed on the user interface part. Furthermore, in

case of small applications performing e.g. admin-

istration tasks the overhead in terms of disk space

and development effort might not merit their re-

alization as a C++ program.

Another area of application development de-

manding specific support is the integration of

OBST based tools into a possibly heterogeneous

environment: There should be simple and flexi-

1. The work reported here is funded by the German Ministry of Research and Technology (BMFT) as part of the project

„STONE“.

